Affiliation:
1. Wroclaw University of Science and Technology, Poland
Abstract
In our study, we examine the impact of citation network structures on the ability to discern valuable research topics in Computer Science literature. We use the bibliographic information available in the DBLP database to extract candidate phrases from scientific paper abstracts. Following that, we construct citation networks based on direct citation, co-citation and bibliographic coupling relationships between the papers. The candidate research topics, in the form of keyphrases and n-grammes, are subsequently ranked and filtered by a graph-text ranking algorithm. This selection of the highest ranked potential topics is further evaluated by domain experts and through the Wikipedia knowledge base. The results obtained from these citation networks are complementary, returning valid but non-overlapping output phrases between some pairs of networks. In particular, bibliographic coupling appears to capture more unique information than either direct citation or co-citation. These findings point towards the possible added value in combining bibliographic coupling analysis with other structures. At the same time, combining direct citation and co-citation is put into question. We expect our findings to be utilised in method design for research topic identification.
Funder
Narodowe Centrum Nauki
H2020 Marie Skłodowska-Curie Actions
Ministerstwo Nauki i Szkolnictwa Wyższego
Subject
Library and Information Sciences,Information Systems
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献