Classifying the Mexican epidemiological semaphore colour from the Covid-19 text Spanish news

Author:

Álvarez-Carmona Miguel A1,Aranda Ramón1ORCID,Rodríguez-González Ansel Y1ORCID,Pellegrin Luis2,Carlos Hugo3

Affiliation:

1. Cátedras Conacyt - Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Mexico

2. Universidad Autonoma de Baja California, Mexico

3. Cátedras Conacyt - Centro de Investigacion en Ciencias de Información Geoespacial, Mexico

Abstract

This work aims to generate classification models that help determine the colour of an epidemiological semaphore (ES) by analysing online news and being better prepared for the different changes in the evolution of the pandemic. To accomplish this, we introduce Cov-NES-Mex corpus, a collection of 77,983 news (labelled with the Mexican ES system) related to Covid-19 for the 32 regions of Mexico. Also, we showed measures that describe the corpus as imbalanced and with a high vocabulary overlap between classes. In addition, evaluation measurements of the pandemic by region are proposed. Furthermore, a classification model, based on a transformer architecture specialised for the Spanish language, achieved up to 0.83 of F-measure. Thus, this work provides evidence that there is essential information in the news that can be used to determine the colour of the ES up to 4 weeks in advance. Finally, the presented results could be applied to other Spanish-speaking countries, which do not have an ES system, thus inferring and comparing their situation concerning the Mexican ES.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3