A weakly supervised approach to Chinese sentiment classification using partitioned self-training

Author:

Zhang Pu1,He Zhongshi2

Affiliation:

1. College of Computer Science, Chongqing University, and College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, China

2. College of Computer Science, Chongqing University, China

Abstract

With the rapid evolution of documents on the World Wide Web which express opinions, there exists an increasing demand for developing such a sentiment analysis technique that can easily adapt to new domains with minimum supervision. This article introduces a novel weakly supervised approach for Chinese sentiment classification. The approach applies a variant of self-training algorithm on two partitions split from test dataset, and combines classification results of the two partitions into a pseudo-labelled training set and an unlabelled test set, then trains an initial classifier on the pseudo-labelled training set and adopts a standard self-learning cycle to obtain the overall classification results. Experiments on the four datasets from two domains show that our approach has competitive advantages over baseline approaches; it even outperforms the supervised approach in some of the datasets despite using no labelled documents.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3