Improving semantic information retrieval by combining possibilistic networks, vector space model and pseudo-relevance feedback

Author:

Chebil Wiem1ORCID,Soualmia Lina F2ORCID

Affiliation:

1. Higer Institute of Computer Science of Mahdia, University of Monastir, Tunisia

2. Normandie Université, Université de Rouen Normandie, LITIS UR 4108, France; LIMICS, Inserm U 1142, France

Abstract

To improve the performance of information retrieval systems (IRSs), we propose in this article a novel approach that enriches the user’s queries with new concepts. Indeed, query expansion is one of the best methods that plays an important role in improving searches for a better semantic information retrieval. The proposed approach in this study combines possibilistic networks (PNs), the vector space model (VSM) and pseudo-relevance feedback (PRF) to evaluate and add relevant concepts to the initial index of the user’s query. First, query expansion is performed using PN, VSM and domain knowledge. PRF is then exploited to enrich, in a second round, the user’s query by applying the same approach used in the first expansion step. To evaluate the performance of the developed system, denoted conceptual information retrieval model (CIRM), several experiments of query expansion are performed. The experiments carried out on the OHSUMED and Clinical Trials corpora showed that using the two measures of possibility and necessity combined the cosinus similarity and PRF improves the query expansion process. Indeed, the improvement rate of our approach compared with the baseline is +28, 49% in terms of P@5.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Reference31 articles.

1. Query expansion techniques for information retrieval: A survey

2. An information-theoretic approach to automatic query expansion

3. Perez-Ageera JR, Araujo L. Comparing and combining methods for automatic query expansion. arXiv Preprint, 2008, https://arxiv.org/abs/0804.2057

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3