Learning time-sensitive domain ontology from scientific papers with a hybrid learning method

Author:

Ren Feiliang1

Affiliation:

1. Northeastern University, People’s Republic of China

Abstract

Large numbers of available scientific papers makes the research of ontology construction an attractive application area. However, there are two shortcomings for most current ontology construction approaches. First, implicit time properties of domain concepts are rarely taken into account in current approaches. Second, current automatic concept relation extraction methods mainly rely on the local context information that surrounds current considered concepts. These two problems prevent most current ontology construction methods from being employed to their full potential. To tackle these problems, we propose a hybrid learning method to integrate concepts’ global information and human experts’ knowledge together into ontology construction, among which concepts’ temporal attributes are taken into account. Our method first divides each concept into four time periods according to their attribution distribution on a time axis. Then global time-related attributions are collected for each concept. Finally, concept relations are extracted with a hybrid learning method. We evaluated our method by testing it on Chinese academic papers. It outperformed a baseline system based on only hierarchical concept relations, showing the effectiveness of our approach.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Domain Ontology Automation Construction Based on Chinese Texts;Proceedings of the 2019 8th International Conference on Software and Computer Applications;2019-02-19

2. Semi-Automatic Rule Learning Method Enabling Information Extraction for Ontology Population;Iranian Journal of Science and Technology, Transactions of Electrical Engineering;2016-11-07

3. Learning Discourse Relations from News Reports: An Event-driven Approach;IEEE Latin America Transactions;2016-01

4. Geosemantic information retrieval and its performance evaluation;Journal of Information Science;2015-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3