A semantic-based video scene segmentation using a deep neural network

Author:

Ji Hyesung1,Hooshyar Danial2,Kim Kuekyeng3,Lim Heuiseok3

Affiliation:

1. Department of Language AI Lab, NCSOFT, Korea

2. Institute of Education, University of Tartu, Estonia

3. Department of Computer Science and Engineering, Korea University, Korea

Abstract

Video scene segmentation is very important research in the field of computer vision, because it helps in efficient storage, indexing and retrieval of videos. Achieving this kind of scene segmentation cannot be done by just calculating the similarity of low-level features presented in the video; high-level features should also be considered to achieve a better performance. Even though much research has been conducted on video scene segmentation, most of these studies failed to semantically segment a video into scenes. Thus, in this study, we propose a Deep-learning Semantic-based Scene-segmentation model (called DeepSSS) that considers image captioning to segment a video into scenes semantically. First, the DeepSSS performs shot boundary detection by comparing colour histograms and then employs maximum-entropy-applied keyframe extraction. Second, for semantic analysis, using image captioning that benefits from deep learning generates a semantic text description of the keyframes. Finally, by comparing and analysing the generated texts, it assembles the keyframes into a scene grouped under a semantic narrative. That said, DeepSSS considers both low- and high-level features of videos to achieve a more meaningful scene segmentation. By applying DeepSSS to data sets from MS COCO for caption generation and evaluating its semantic scene-segmentation task results with the data sets from TRECVid 2016, we demonstrate quantitatively that DeepSSS outperforms other existing scene-segmentation methods using shot boundary detection and keyframes. What’s more, the experiments were done by comparing scenes segmented by humans and scene segmented by the DeepSSS. The results verified that the DeepSSS’ segmentation resembled that of humans. This is a new kind of result that was enabled by semantic analysis, which was impossible by just using low-level features of videos.

Funder

This research is supported by Ministry of Culture, Sport and Tourism(MCST) and Korea Creative Content Agency(KOCCA) in the Culture Technology(CT) Research & Development Program 2018

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Diffusion Neural Network-Enhanced Object Tracking Approach Under Sports Scenarios;Journal of Circuits, Systems and Computers;2024-07-31

2. Multimodal High-order Relation Transformer for Scene Boundary Detection;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

3. User Adaptive Video Summarization;2023 6th International Conference on Information Systems and Computer Networks (ISCON);2023-03-03

4. Fuzzy Rule-Based Model to Train Videos in Video Surveillance System;Intelligent Automation & Soft Computing;2023

5. Automatic Scene Segmentation Algorithm for Image Color Restoration;Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering;2022-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3