Affiliation:
1. Department of Computer Science and Technology and The Key Laboratory of Embedded System and Services Computing, Ministry of Education, Tongji University, China
2. Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan, China
Abstract
In the information retrieval field, effective and efficient extraction of topics from large-scale online text streams is challenging because it is a fully unsupervised learning task without prior knowledge. Most previous studies have focused on how to analyse text corpus to extract topics, rarely considering time dimensions. In the present study, we approached topic detection as a temporal optimization problem. Here, we propose a novel approach to incremental topic detection, called online topic detection using tensor factorization (OTD-TF), which is based on latent Dirichlet allocation (LDA). First, topics are obtained from the corpus in current time slices using LDA. Second, a topic tensor with a time dimension is constructed to identify the correlations between pairs of topics. Then, approximate topics are merged using TF. Finally, documents are reallocated to corresponding topic bins. By executing these steps continuously and incrementally, temporal topic detection can be achieved. In theoretical analyses and simulation experiments, OTD-TF outperformed other systems in terms of space and time complexity and achieved a high precision ratio. Our experimental evaluations also revealed interesting temporal patterns in topic emergence, development, extinction, burst and transience.
Subject
Library and Information Sciences,Information Systems
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献