Request-based, secured and energy-efficient (RBSEE) architecture for handling IoT big data

Author:

Ahad Mohd Abdul11ORCID,Biswas Ranjit1

Affiliation:

1. Department of Computer Science & Engineering, School of Engineering Sciences & Technology, Jamia Hamdard, New Delhi, India

Abstract

The technological advancements in the field of computing are giving rise to the generation of gigantic volumes of data which are beyond the handling capabilities of the conventionally available tools, techniques and systems. These types of data are known as big data. Moreover with the emergence of Internet of Things (IoT), these types of data have increased in multiple folds in 7Vs (volume, variety, veracity, value, variability, velocity and visualisation). There are several techniques prevalent in today’s time for handling these types of huge data. Hadoop is one such open source framework which has emerged as a de facto technology for handling such huge datasets. In an IoT ecosystem, real-time handling of requests is an imperative requirement; however, Hadoop has certain limitations while handling these types of requests. In this article, we present an energy-efficient architecture for effective, secured and real-time handling of IoT big data. The proposed approach adopts atrain distributed system (ADS) to construct the core architecture. This study uses software-defined networking (SDN) framework for energy-efficient and optimal routing of data and requests from source to destination, and vice versa. Furthermore, to ensure secured handling of IoT big data, the proposed approach uses ‘Twofish’ cryptographic technique for encrypting the information captured by the sensors. Finally, the concept of ‘request-type’ identifying unit has been proposed. Instead of handling all the requests in an identical way, the proposed approach works by characterising the requests on the basis of certain criteria and parameters, which are identified here.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3