Measuring knowledge contribution performance of physicians in online health communities: A BP neural network approach

Author:

Xia Sudi1,Zhang Zhijian1,Fu Shaoxiong2ORCID,Chen Xiaoyu3ORCID

Affiliation:

1. School of Information Management, Wuhan University, China

2. College of Information Management, Nanjing Agricultural University, China

3. School of Cultural Heritage and Information Management, Shanghai University, China

Abstract

Extant literature on measuring the performance of physicians’ knowledge contribution in an online health community (OHC) is limited. To address this gap, this article aims to (1) develop a measurement model for physicians’ knowledge contribution performance; (2) use BP neural network to assign reasonable weight to each indicator of the model; and (3) explore the status and differences of knowledge contribution performance among a group of physicians. Based on the sample of 5407 infectious disease physicians in a Chinese OHC, we propose the measurement model by integrating physicians’ active knowledge contribution (AKC) and responsive knowledge contribution (RKC), covering 11 dimensions of contribution quantity and quality. We employ the BP neural network to optimise the model weights using the initial weight of the model obtained by the entropy method. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is used to evaluate the performance of physicians’ knowledge contribution in the OHC. The results show that it is feasible to use BP neural network to assign model weights. The distribution of physicians’ knowledge contribution performance is uneven; only a few have a high-level knowledge contribution performance. Meanwhile, a significant positive correlation exists between a physician’s title and respective knowledge contribution performance. Our research may contribute to related literature and practices by offering a fine-grained understanding of the performance of physicians’ knowledge contribution.

Funder

2021 Shuang Chuang Doctoral Program in Jiangsu Province

Fundamental Research Funds of Humanities and Social Science Research for the Central Universities of China

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3