TTC-3600: A new benchmark dataset for Turkish text categorization

Author:

Kılınç Deniz1,Özçift Akın1,Bozyigit Fatma1,Yıldırım Pelin1,Yücalar Fatih1,Borandag Emin1

Affiliation:

1. Faculty of Technology, Celal Bayar University, Turkey

Abstract

Owing to the rapid growth of the World Wide Web, the number of documents that can be accessed via the Internet explosively increases with each passing day. Considering news portals in particular, sometimes documents related to categories such as technology, sports and politics seem to be in the wrong category or documents are located in a generic category called others. At this point, text categorization (TC), which is generally addressed as a supervised learning task is needed. Although there are substantial number of studies conducted on TC in other languages, the number of studies conducted in Turkish is very limited owing to the lack of accessibility and usability of datasets created. In this paper, a new dataset named TTC-3600, which can be widely used in studies of TC of Turkish news and articles, is created. TTC-3600 is a well-documented dataset and its file formats are compatible with well-known text mining tools. Five widely used classifiers within the field of TC and two feature selection methods are evaluated on TTC-3600. The experimental results indicate that the best accuracy criterion value 91.03% is obtained with the combination of Random Forest classifier and attribute ranking-based feature selection method in all comparisons performed after pre-processing and feature selection steps. The publicly available TTC-3600 dataset and the experimental results of this study can be utilized in comparative experiments by other researchers.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relational Turkish Text Classification Using Distant Supervised Entities and Relations;Computers, Materials & Continua;2024

2. Feature selection based on long short term memory for text classification;Multimedia Tools and Applications;2023-10-18

3. Strategies for enhancing the performance of news article classification in Bangla: Handling imbalance and interpretation;Engineering Applications of Artificial Intelligence;2023-10

4. A Turkish Text Classification Based Feature Selection and Density Peaks Clustering;2023 31st Signal Processing and Communications Applications Conference (SIU);2023-07-05

5. Filter feature selection methods for text classification: a review;Multimedia Tools and Applications;2023-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3