Concept-LDA: Incorporating Babelfy into LDA for aspect extraction

Author:

Ekinci Ekin1ORCID,İlhan Omurca Sevinç1

Affiliation:

1. Department of Computer Engineering, Faculty of Engineering, Kocaeli University, Turkey

Abstract

Latent Dirichlet allocation (LDA) is one of the probabilistic topic models; it discovers the latent topic structure in a document collection. The basic assumption under LDA is that documents are viewed as a probabilistic mixture of latent topics; a topic has a probability distribution over words and each document is modelled on the basis of a bag-of-words model. The topic models such as LDA are sufficient in learning hidden topics but they do not take into account the deeper semantic knowledge of a document. In this article, we propose a novel method based on topic modelling to determine the latent aspects of online review documents. In the proposed model, which is called Concept-LDA, the feature space of reviews is enriched with the concepts and named entities, which are extracted from Babelfy to obtain topics that contain not only co-occurred words but also semantically related words. The performance in terms of topic coherence and topic quality is reported over 10 publicly available datasets, and it is demonstrated that Concept-LDA achieves better topic representations than an LDA model alone, as measured by topic coherence and F-measure. The learned topic representation by Concept-LDA leads to accurate and an easy aspect extraction task in an aspect-based sentiment analysis system.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3