Integrating word status for joint detection of sentiment and aspect in reviews

Author:

Bagheri Ayoub1

Affiliation:

1. Department of Methodology and Statistics, Faculty of Social Sciences, Utrecht University, The Netherlands; Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, The Netherlands

Abstract

A crucial task in sentiment analysis is aspect detection: the step of selecting the aspects on which opinions are expressed. This step anticipates the step of determining whether the opinions on aspects are positive or negative. This article proposes a novel probabilistic generative topic model for aspect-based sentiment analysis which is able to discover the latent structure of a large collection of review documents. The proposed joint sentiment-aspect detection model (SAM) is a generative topic model that incorporates the structure of review sentences for detecting aspects and sentiments simultaneously. The intuitions behind the SAM are that from generating documents by latent single- and multi-word topics, modelling the word distribution for each topic and learning of the prior distribution over topics in sentences of documents. SAM introduces word status so that the model can decide when to sample from a bigram distribution or a unigram distribution and integrates all these components into one combined model for aspect-based sentiment analysis. We evaluate SAM both qualitatively and quantitatively to show that the model is indeed able to perform the task effectively and improves significantly over standard joint sentiment-aspect models. The proposed model can easily be transformed between domains or languages and can detect the polarity of text data at various levels. However, for the quantitative analysis, we mainly focus on presenting the results for the document-level sentiment classification.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3