Modelling multi-topic information propagation in online social networks based on resource competition

Author:

Sun Liyuan1,Zhou Yadong2,Guan Xiaohong3

Affiliation:

1. Center for Intelligent and Networked Systems, Tsinghua University and CNCERT/CC, China

2. Ministry of Education Key Laboratory for Intelligent Networks and Network Security, Xi’an Jiaotong University, China

3. MOE KLINNS Laboratory, Xi’an Jiaotong University and Center for Intelligent and Networked Systems, Tsinghua University, China

Abstract

Understanding information propagation in online social networks is important in many practical applications and is of great interest to many researchers. The challenge with the existing propagation models lies in the requirement of complete network structure, topic-dependent model parameters and topic isolated spread assumption, etc. In this paper, we study the characteristics of multi-topic information propagation based on the data collected from Sina Weibo, one of the most popular microblogging services in China. We find that the daily total amount of user resources is finite and users’ attention transfers from one topic to another. This shows evidence on the competitions between multiple dynamical topics. According to these empirical observations, we develop a competition-based multi-topic information propagation model without social network structure. This model is built based on general mechanisms of resource competitions, i.e. attracting and distracting users’ attention, and considers the interactions of multiple topics. Simulation results show that the model can effectively produce topics with temporal popularity similar to the real data. The impact of model parameters is also analysed. It is found that topic arrival rate reflects the strength of competitions, and topic fitness is significant in modelling the small scale topic propagation.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3