Extracting the roots of Arabic words without removing affixes

Author:

Yaseen Qussai1,Hmeidi Ismail2

Affiliation:

1. Yarmouk University, Jordan

2. Jordan University of Science and Technology, Jordan

Abstract

Most research in Arabic roots extraction focuses on removing affixes from Arabic words. This process adds processing overhead and may remove non-affix letters, which leads to the extraction of incorrect roots. This paper advises a new approach to dealing with this issue by introducing a new algorithm for extracting Arabic words’ roots. The proposed algorithm, which is called the Word Substring Stemming Algorithm, does not remove affixes during the extraction process. Rather, it is based on producing the set of all substrings of an Arabic word, and uses the Arabic roots file, the Arabic patterns file and a concrete set of rules to extract correct roots from substrings. The experiments have shown that the proposed approach is competitive and its accuracy is 83.9%, Furthermore, its accuracy can be enhanced more in the sense that, for about 9.9% of the tested words, the WSS algorithm retrieves two candidates (in most cases) for the correct root.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tasaheel: An Arabic Automative Textual Analysis Tool—All in One;IEEE Access;2023

2. Socio-Semantic Information Retrieval of Structured Arabic Texts;2022 IEEE/ACS 19th International Conference on Computer Systems and Applications (AICCSA);2022-12

3. Meta-search based approach for Arabic information retrieval;Online Information Review;2022-02-25

4. Title-Based Document Classification for Arabic Theses and Dissertations;Advances in Data and Information Sciences;2022

5. Text mining: A survey of Arabic root extraction algorithms;International Journal of ADVANCED AND APPLIED SCIENCES;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3