An efficient frequent melody indexing method to improve the performance of query-by-humming systems

Author:

You Jinhee1,Park Sanghyun2,Kim Inbum3

Affiliation:

1. Department of Computer Science, Yonsei University, Korea

2. Department of Computer Science, Yonsei University, Korea,

3. Division of Computor, Kimpo College, Korea

Abstract

In recent years, the need to efficiently store and retrieve large amounts of musical information has increased. In this paper, we design and implement a Query-By-Humming (QBH) system, which can retrieve melodies similar to users' humming. To make this QBH system efficient, the following three methods were proposed. First, we convert the melodies to be indexed into the corresponding strings, in order to increase search speed. The conversion method is designed to tolerate the errors involved in humming. Second, we extract significant melodies from music and then build a couple of indexes from them. For this task, we propose reliable methods for extracting melodies that occur frequently and for melodies that begin after a long rest. Third, we propose a three-step index searching method for minimizing database access. Through the experiments with a real-world data set, it was verified that this system has noticeable improvements over the N-gram approach.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3