Unsupervised extractive multi-document summarization method based on transfer learning from BERT multi-task fine-tuning

Author:

Lamsiyah Salima1ORCID,Mahdaouy Abdelkader El2ORCID,Ouatik Saïd El Alaoui1,Espinasse Bernard3

Affiliation:

1. Laboratory of Informatics, Signals, Automatic, and Cognitivism, FSDM, Sidi Mohamed Ben Abdellah University, Morocco; Laboratory of Engineering Sciences, National School of Applied Sciences, Ibn Tofail University, Morocco

2. School of Computer Science (UM6P-CS), Mohammed VI Polytechnic University (UM6P), Morocco

3. LIS UMR CNRS 7020, Aix-Marseille Université/Université de Toulon, France

Abstract

Text representation is a fundamental cornerstone that impacts the effectiveness of several text summarization methods. Transfer learning using pre-trained word embedding models has shown promising results. However, most of these representations do not consider the order and the semantic relationships between words in a sentence, and thus they do not carry the meaning of a full sentence. To overcome this issue, the current study proposes an unsupervised method for extractive multi-document summarization based on transfer learning from BERT sentence embedding model. Moreover, to improve sentence representation learning, we fine-tune BERT model on supervised intermediate tasks from GLUE benchmark datasets using single-task and multi-task fine-tuning methods. Experiments are performed on the standard DUC’2002–2004 datasets. The obtained results show that our method has significantly outperformed several baseline methods and achieves a comparable and sometimes better performance than the recent state-of-the-art deep learning–based methods. Furthermore, the results show that fine-tuning BERT using multi-task learning has considerably improved the performance.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3