Affiliation:
1. Departamento de Informática y Sistemas, Universidad de Murcia, Spain
2. Division of Research and Postgraduate Studies Instituto Tecnológico de Orizaba, Veracruz, Mexico
3. CNRS, IRIT, Université Paul Sabatier, France
4. Department of Modern Languages, Universidad Católica San Antonio de Murcia, Spain
Abstract
With the exponential growth of social media, that is, blogs and social networks, organizations and individual persons are increasingly using the number of reviews of these media for decision-making about a product or service. Opinion mining detects whether the emotions of an opinion expressed by a user on Web platforms in natural language are positive or negative. This paper presents extensive experiments to study the effectiveness of the classification of Spanish opinions in five categories: highly positive, highly negative, positive, negative and neutral, using the combination of the psychological and linguistic features of LIWC (Linguistic Inquiry and Word Count). LIWC is a text analysis software that enables the extraction of different psychological and linguistic features from natural language text. For this study, two corpora have been used, one about movies and one about technological products. Furthermore, we conducted a comparative assessment of the performance of various classification techniques, J48, SMO and BayesNet, using precision, recall and F-measure metrics. The findings revealed that the positive and negative categories provide better results than the other categories. Finally, experiments on both corpora indicated that SMO produces better results than BayesNet and J48 algorithms, obtaining an F-measure of 90.4 and 87.2% in each domain.
Subject
Library and Information Sciences,Information Systems
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献