Affiliation:
1. Business School, Sichuan University, China
2. Department of Information Systems, City University of Hong Kong, China
Abstract
The unprecedented outbreak of COVID-19 is one of the most serious global threats to public health in this century. During this crisis, specialists in information science could play key roles to support the efforts of scientists in the health and medical community for combatting COVID-19. In this article, we demonstrate that information specialists can support health and medical community by applying text mining technique with latent Dirichlet allocation procedure to perform an overview of a mass of coronavirus literature. This overview presents the generic research themes of the coronavirus diseases: COVID-19, MERS and SARS, reveals the representative literature per main research theme and displays a network visualisation to explore the overlapping, similarity and difference among these themes. The overview can help the health and medical communities to extract useful information and interrelationships from coronavirus-related studies.
Funder
guangzhou municipal science and technology project
sichuan province science and technology support program
Subject
Library and Information Sciences,Information Systems
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献