A conceptual framework for managing very diverse data for complex, interdisciplinary science

Author:

Parsons Mark A.1,Godøy Øystein2,LeDrew Ellsworth3,de Bruin Taco F.4,Danis Bruno5,Tomlinson Scott6,Carlson David7

Affiliation:

1. National Snow and Ice Data Center, University of Colorado, USA

2. Norwegian Meteorological Institute, Norway

3. University of Waterloo, Canada

4. NIOZ Royal Netherlands Institute for Sea Research, The Netherlands

5. Antarctic Biodiversity Information Facility, Belgium

6. Indian and Northern Affairs Canada, Canada

7. UNAVCO, USA

Abstract

Much attention has been given to the challenges of handling massive data volumes in modern data-intensive science. This paper examines an equally daunting challenge – the diversity of interdisciplinary data, notably research data, and the need to interrelate these data to understand complex systemic problems such as environmental change and its impact. We use the experience of the International Polar Year 2007–8 (IPY) as a case study to examine data management approaches seeking to address issues around complex interdisciplinary science. We find that, while technology is a critical factor in addressing the interdisciplinary dimension of the data intensive science, the technologies developing for exa-scale data volumes differ from those that are needed for extremely distributed and heterogeneous data. Research data will continue to be highly heterogeneous and distributed and will require technologies to be much simpler and more flexible. More importantly, there is a need for both technical and cultural adaptation. We describe a vision of discoverable, open, linked, useful, and safe collections of data, organized and curated using the best principles and practices of information and library science. This vision provides a framework for our discussion and leads us to suggest several short- and long-term strategies to facilitate a socio-technical evolution in the overall science data ecosystem.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3