Affiliation:
1. School of Software, Xiamen University, Xiamen, Fujian, People’s Republic of China
Abstract
This paper analyses topic segmentation based on the LDA (Latent Dirichlet Allocation) model, and performs the topic segmentation and topic evolution of stem cell research literatures in PubMed from 2001 to 2012 by combining the HMM (Hidden Markov Model) and co-occurrence theory. Stem cell research topics were obtained with LDA and expert judgements made on these topics to test the feasibility of the model classification. Further, the correlation between topics was analysed. HMM was used to predict the trend evolution of topics over various years, and a time series map was used to visualize the evolutional relationships among the stem cell topics.
Subject
Library and Information Sciences,Information Systems
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献