Affiliation:
1. Dong-A University, Republic of Korea
2. Sungkyunkwan University, Republic of Korea
Abstract
Translation language resources, such as bilingual word lists and parallel corpora, are important factors affecting the effectiveness of cross-language information retrieval (CLIR) systems. In particular, when large domain-appropriate parallel corpora are not available, developing an effective CLIR system is particularly difficult. Furthermore, creating a large parallel corpus is costly and requires considerable effort. Therefore, we here demonstrate the construction of parallel corpora from Wikipedia as well as improved query translation, wherein the queries are used for a CLIR system. To do so, we first constructed a bilingual dictionary, termed WikiDic. Then, we evaluated individual language resources and combinations of them in terms of their ability to extract parallel sentences; the combinations of our proposed WikiDic with the translation probability from the Web’s bilingual example sentence pairs and WikiDic was found to be best suited to parallel sentence extraction. Finally, to evaluate the parallel corpus generated from this best combination of language resources, we compared its performance in query translation for CLIR to that of a manually created English–Korean parallel corpus. As a result, the corpus generated by our proposed method achieved a better performance than did the manually created corpus, thus demonstrating the effectiveness of the proposed method for automatic parallel corpus extraction. Not only can the method demonstrated herein be used to inform the construction of other parallel corpora from language resources that are readily available, but also, the parallel sentence extraction method will naturally improve as Wikipedia continues to be used and its content develops.
Funder
institute for information and communications technology promotion
Korea government
Subject
Library and Information Sciences,Information Systems
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献