Affiliation:
1. Department of Management Information Systems, Bogazici University, Turkey
Abstract
The popularity of location-based social networks has prompted researchers to study recommendation systems for location-based services. When used separately, each existing venue recommendation system algorithm has its own drawbacks (e.g. cold start, data sparsity, scalability). Another issue is that critical information about context is not commonly used in venue recommendation systems. This article proposes a hybrid recommendation model that combines contextual information, user-based and item-based collaborative filtering and content-based filtering. For this purpose, we collected user visit histories, venue-related information (distance, category, popularity and price) and contextual information (weather, season, date and time of visits) related to individual user visits from Twitter, Foursquare and Weather Underground. Experimental evaluation of the proposed hybrid system (HybRecSys) using a real-world dataset shows better results than baseline approaches.
Funder
Bogazici University Scientific Research Projects Fund
Subject
Library and Information Sciences,Information Systems
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献