Sequential patent trading recommendation using knowledge-aware attentional bidirectional long short-term memory network (KBiLSTM)

Author:

Du Wei1ORCID,Jiang Guanran1,Xu Wei1,Ma Jian2

Affiliation:

1. School of Information, Renmin University of China, China

2. Department of Information Systems, City University of Hong Kong, China

Abstract

With the rapid development of the patent marketplace, patent trading recommendation is required to mitigate the technology searching cost of patent buyers. Current research focuses on the recommendation based on existing patents of a company; a few studies take into account the sequential pattern of patent acquisition activities and the possible diversity of a company’s business interests. Moreover, the profiling of patents based on solely patent documents fails to capture the high-order information of patents. To bridge the gap, we propose a knowledge-aware attentional bidirectional long short-term memory network (KBiLSTM) method for patent trading recommendation. KBiLSTM uses knowledge graph embeddings to profile patents with rich patent information. It introduces bidirectional long short-term memory network (BiLSTM) to capture the sequential pattern in a company’s historical records. In addition, to address a company’s diverse technology interests, we design an attention mechanism to aggregate the company’s historical patents given a candidate patent. Experimental results on the United States Patent and Trademark Office (USPTO) data set show that KBiLSTM outperforms state-of-the-art baselines for patent trading recommendation in terms of F1 and normalised discounted cumulative gain (nDCG). The attention visualisation of randomly selected company intuitively demonstrates the recommendation effectiveness.

Funder

Humanities and Social Sciences Foundation of the Ministry of Education

National Natural Science Foundation of China

Ministry of Education, Science and Technology Development Center

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3