A social recommender system by combining social network and sentiment similarity: A case study of healthcare

Author:

Yang Donghui1,Huang Chao1,Wang Mingyang2

Affiliation:

1. Southeast University, China

2. Northeast Forestry University, China

Abstract

Social recommender systems aim to support user preferences and help users make better decisions in social media. The social network and the social context are two vital elements in social recommender systems. In this contribution, we propose a new framework for a social recommender system based on both network structure analysis and social context mining. Exponential random graph models (ERGMs) are able to capture and simulate the complex structure of a micro-blog network. We derive the prediction formula from ERGMs for recommending micro-blog users. Then, a primary recommendation list is created by analysing the micro-blog network structure. In the next step, we calculate the sentiment similarities of micro-blog users based on a sentiment feature set which is extracted from users’ tweets. Sentiment similarities are used to filter the primary recommendation list and find users who have similar attitudes on the same topic. The goal of those two steps is to make the social recommender system much more precise and to satisfy users’ psychological preferences. At the end, we use this new framework deal with big real-world data. The recommendation results of diabetes accounts of Weibo show that our method outperforms other social recommender systems.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3