Cross-lingual text similarity exploiting neural machine translation models

Author:

Seki Kazuhiro1ORCID

Affiliation:

1. Konan University, Japan

Abstract

This article studies cross-lingual text similarity using neural machine translation models. A straightforward approach based on machine translation is to use translated text so as to make the problem monolingual. Another possible approach is to use intermediate states of machine translation models as recently proposed in the related work, which could avoid propagation of translation errors. We aim at improving both approaches independently and then combine the two types of information, that is, translations and intermediate states, in a learning-to-rank framework to compute cross-lingual text similarity. To evaluate the effectiveness and generalisability of our approach, we conduct empirical experiments on English–Japanese and English–Hindi translation corpora for a cross-lingual sentence retrieval task. It is demonstrated that our approach using translations and intermediate states outperforms other neural network–based approaches and is even comparable with a strong baseline based on a state-of-the-art machine translation system.

Funder

Japan Science and Technology Agency

Ministry of Education, Culture, Sports, Science and Technology

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3