Automatic construction of academic profile: A case of information science domain

Author:

Geng Qian12,Chuai Ziang,Jin Jian2ORCID

Affiliation:

1. Center for Governance Studies, Beijing Normal University at Zhuhai, China

2. School of Government, Beijing Normal University, Beijing, China

Abstract

To provide junior researchers with domain-specific concepts efficiently, an automatic approach for academic profiling is needed. First, to obtain personal records of a given scholar, typical supervised approaches often utilise structured data like infobox in Wikipedia as training dataset, but it may lead to a severe mis-labelling problem when they are utilised to train a model directly. To address this problem, a new relation embedding method is proposed for fine-grained entity typing, in which the initial vector of entities and a new penalty scheme are considered, based on the semantic distance of entities and relations. Also, to highlight critical concepts relevant to renowned scholars, scholars’ selective bibliographies which contain massive academic terms are analysed by a newly proposed extraction method based on logistic regression, AdaBoost algorithm and learning-to-rank techniques. It bridges the gap that conventional supervised methods only return binary classification results and fail to help researchers understand the relative importance of selected concepts. Categories of experiments on academic profiling and corresponding benchmark datasets demonstrate that proposed approaches outperform existing methods notably. The proposed techniques provide an automatic way for junior researchers to obtain organised knowledge in a specific domain, including scholars’ background information and domain-specific concepts.

Funder

National Social Science Foundation of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3