Retrospective analysis of the effect on interval cancer rate of adding an artificial intelligence algorithm to the reading process for two-dimensional full-field digital mammography

Author:

Graewingholt Axel1ORCID,Rossi Paolo Giorgi2ORCID

Affiliation:

1. Mammographiescreening-Zentrum Paderborn, Breast Cancer Screening, Paderborn, NRW, Germany

2. Epidemiology Unit, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia: Reggio Emilia, Emilia-Romagna, Italy

Abstract

Interval cancers are a commonly seen problem in organized breast cancer screening programs and their rate is measured for quality assurance. Artificial intelligence algorithms have been proposed to improve mammography sensitivity, in which case it is likely that the interval cancer rate would decrease and the quality of the screening system could be improved. Interval cancers from negative screening in 2011 and 2012 of one regional unit of the national German breast cancer screening program were classified by a group of radiologists, categorizing the screening digital mammography with diagnostic images as true interval, minimal signs, false negative and occult cancer. Screening mammograms were processed using a detection algorithm based on deep learning. Of the 29 cancer cases available, artificial intelligence identified eight out of nine of those classified as minimal signs, all six false negatives and none of the true interval and occult cancers. Sensitivity for lesions judged to be already present in screening mammogram was 93% (95% confidence interval 68–100) and sensitivity for any interval cancer was 48% (95% confidence interval 29–67). Using an artificial intelligence algorithm as an additional reading tool has the potential to reduce interval cancers. How and if this theoretical advantage can be reached without a negative effect on recall rate is a challenge for future research.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3