Assessment of breast positioning criteria in mammographic screening: Agreement between artificial intelligence software and radiographers

Author:

Waade Gunvor G12,Danielsen Anders Skyrud13ORCID,Holen Åsne S1,Larsen Marthe1,Hanestad Berit4,Hopland Nina-Merete4,Kalcheva Vanya4,Hofvind Solveig12ORCID

Affiliation:

1. Section for Breast Cancer Screening, Cancer Registry of Norway, Oslo, Norway

2. Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway

3. Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway

4. Department of Radiology, Haukeland University Hospital, Bergen, Norway

Abstract

Objectives To determine the agreement between artificial intelligence software (AI) and radiographers in assessing breast positioning criteria for mammograms from standard digital mammography and digital breast tomosynthesis. Methods Assessment of breast positioning was performed by AI and by four radiographers in pairs of two on 156 examinations of women screened in Bergen, April to September 2019, as part of BreastScreen Norway. Ten criteria were used; three for craniocaudal and seven for mediolateral-oblique view. The criteria evaluated the appearance of the nipple, breast rotation, pectoral muscle, inframammary fold and pectoral nipple line. Intraclass correlation and Cohen’s kappa coefficient (κ) were used to investigate the correlation and agreement between the radiographer’s assessments and AI. Results The intraclass correlation for the pectoral nipple line between the radiographers and AI was >0.92. A substantial to almost perfect agreement (κ > 0.69) was observed between the radiographers and AI on the nipple in profile criterion. We observed a slight to moderate agreement for the other criteria (κ = 0.06–0.52) and generally a higher agreement between the two pairs of radiographers (mean κ = 0.70) than between the radiographers and AI (mean κ = 0.41). Conclusions AI has great potential in evaluating breast position criteria in mammography by reducing subjectivity. However, varying agreement between radiographers and AI was observed. Standardized and evidence-based criteria for definitions, understandings and assessment methods are needed to reach optimal image quality in mammography.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Health Policy

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3