qmodel: A command for fitting parametric quantile models

Author:

Bottai Matteo1,Orsini Nicola2

Affiliation:

1. Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.

2. Biostatistics Team, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden.

Abstract

In this article, we introduce the qmodel command, which fits parametric models for the conditional quantile function of an outcome variable given covariates. Ordinary quantile regression, implemented in the qreg command, is a popular, simple type of parametric quantile model. It is widely used but known to yield erratic estimates that often lead to uncertain inferences. Parametric quantile models overcome these limitations and extend modeling of conditional quantile functions beyond ordinary quantile regression. These models are flexible and efficient. qmodel can estimate virtually any possible linear or nonlinear parametric model because it allows the user to specify any combination of qmodel-specific built-in functions, standard mathematical and statistical functions, and substitutable expressions. We illustrate the potential of parametric quantile models and the use of the qmodel command and its postestimation commands through realand simulated-data examples that commonly arise in epidemiological and pharmacological research. In addition, this article may give insight into the close connection that exists between quantile functions and the true mathematical laws that generate data.

Publisher

SAGE Publications

Subject

Mathematics (miscellaneous)

Reference11 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parametric expectile regression and its application for premium calculation;Insurance: Mathematics and Economics;2023-07

2. Field experiments and public policy: festina lente;Behavioural Public Policy;2020-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3