Adaptive Markov Chain Monte Carlo Sampling and Estimation in Mata

Author:

Baker Matthew J.1

Affiliation:

1. Hunter College and the Graduate Center, CUNY New York, NY

Abstract

I describe algorithms for drawing from distributions using adaptive Markov chain Monte Carlo (MCMC) methods; I introduce a Mata function for performing adaptive MCMC, amcmc(); and I present a suite of functions, amcmc_ *(), that allows an alternative implementation of adaptive MCMC. amcmc() and amcmc_ *() can be used with models set up to work with Mata's moptimize( ) (see [M-5] moptimize( )) or optimize( ) (see [M-5] optimize( )) or with standalone functions. To show how the routines can be used in estimation problems, I give two examples of what Chernozhukov and Hong (2003, Journal of Econometrics 115: 293–346) refer to as quasi-Bayesian or Laplace-type estimators—simulation-based estimators using MCMC sampling. In the first example, I illustrate basic ideas and show how a simple linear model can be fit by simulation. In the next example, I describe simulation-based estimation of a censored quantile regression model following Powell (1986, Journal of Econometrics 32: 143–155); the discussion describes the workings of the command mcmccqreg. I also present an example of how the routines can be used to draw from distributions without a normalizing constant and used in Bayesian estimation of a mixed logit model. This discussion introduces the command bayesmixedlogit.

Publisher

SAGE Publications

Subject

Mathematics (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3