Farrerol Inhibits Vascular Smooth Muscle Cell Proliferation and Protects Them From Oxidative Injury via Bidirectional Modulation of the PI3K/Akt/mTOR Signaling Pathway

Author:

Fang Jiacheng1,Jiang Huanhuan1,Liu Enli1ORCID,Ge Rui1,Li Qingshan12

Affiliation:

1. Shanxi Medical University, Taiyuan, China

2. Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Taiyuan, China

Abstract

The inhibition of intimal hyperplasia (IH) is an effective strategy to improve the long-term outcome of endovascular therapy and prevent restenosis. Farrerol, a naturally occurring dihydroflavone with a variety of bioactivities, exerts inhibitory effects against balloon injury-induced IH in rats. In the present study, bioinformatics analysis, in combination with in vitro experimental validation, was performed to elucidate the underlying inhibitory mechanisms. The protein–protein interaction (PPI) network was assessed to identify farrerol-related protein targets in the context of IH, based on which biological functions and pathway enrichment were analyzed. The proliferation and cell cycle distribution of vascular smooth muscle cells (VSMCs) were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide and 5-ethynyl-2-deoxyuridine incorporation assays and flow cytometric analysis, respectively. The level of pro-inflammatory cytokines in the cell culture medium was estimated using an enzyme-linked immunosorbent assay (ELISA). Protein expression in A7r5 cells was determined by western blotting. Forty-six IH-related targets of farrerol were identified, and the PI3K/Akt/mTOR pathway was highly enriched among the 43 predicted pathways ( P < .05). In serum (10% fetal bovine serum)-induced A7r5 cells, farrerol inhibited proliferation through non-cytotoxic effects, induced cell cycle arrest in the G0/G1phase , and suppressed the activation of the PI3K/Akt/mTOR pathway. In H2O2(300 µM)-induced A7r5 cells, farrerol reduced the release of IL-1 β and TNF- α and reversed the suppressive effect on the PI3K/Akt/mTOR pathway in response to H2O2stimulation. In conclusion, farrerol inhibits the proliferation of VSMCs and protects VSMCs from oxidative injury via the bidirectional modulation of the PI3K/Akt/mTOR signaling pathway, which might contribute to the suppression of neointima formation.

Funder

the Natural Science Foundation of Shanxi Province

the Open Fund of Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3