Affiliation:
1. School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
2. School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou, China
3. Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
Abstract
Objective: The study aimed to analyze the core active compounds and the potential mechanism of Shuganning injection (SGNI) through network pharmacology with biological experiments. Methods: Active compounds and targets of SGNI were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Targetnet database, whereas the liver disease-related targets were identified through the Genecards and Online Mendelian Inheritance in Man databases. The “compound-target” and “protein-protein interaction” networks construction, core target identification, and pathway enrichment were then performed. Finally, the exploration of the mechanism of action for SGNI against acetaminophen (APAP)-induced liver injury in the HepaRG cells and validation of three identified protein targets was also carried out through western blot assay, including tumor protein p53 (p53, TP53), transcription factor Jun (Jun), and Caspase 3 (CASP3). Results: The result showed that a total of 312 active compounds of SGNI and 408 liver disease-related targets, as well as 131 core targets were revealed through databases, such as prostaglandin G/H synthase 1, prostaglandin G/H synthase 2, and nuclear factor NF-kappa B (NF-kB) p65 subunit (RELA). The core targets of SGNI were involved in regulating hepatitis B signaling pathway, NF-kB signaling pathway, Toll-like receptor signaling pathway, and tumor necrosis factor (TNF) signaling pathway. Moreover, results of molecular docking in this study indicated that chlorogenic acid, geniposide, baicalin, indirubin, and ganoderic acid A could act on RELA, JUN, TP53, TNF, CASP3, Caspase 8 (CASP8) and nuclear factor NF-kB p105 subunit (NFKB1). Similarly, results of western blot revealed that SGNI reduced the expression of p53, Jun, and Caspase 3 proteins in HepaRG cells as compared with the APAP group ( P < 0.01 or P < 0.05). Conclusion: The present study verified the therapeutic effects and mechanism of SGNI on liver diseases and pointed out new directions for further research.
Subject
Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine