Berberine Inhibits Endothelial Cell Proliferation via Repressing ERK1/2 Pathway

Author:

Wen Xiaoqing1ORCID,Zhou Xia2,Guo Ling3

Affiliation:

1. Department of General Practice, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China

2. Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China

3. Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Oianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, Shandong, China

Abstract

Abnormal angiogenesis plays a key role in cancer progression. In recent years, anti-angiogenic therapy has attracted increasing attention. Berberine (BBR), the main component extracted from Coptis (Ranunculaceae) rhizome, has an anti-angiogenic effect. However, the underlying mechanisms remain to be elucidated. Endothelial cell proliferation is a pivotal process in angiogenesis. In our research, we observed that BBR specifically downregulated the expression of the extracellular signal-regulated kinase 1/2 (ERK1/2) protein in human umbilical vein endothelial cells (HUVECs). The role of BBR in HUVEC proliferation was then assessed using methylthiazolyldiphenyl-tetrazolium bromide and cell counting Kit-8 (CCK-8) assays. The effect of BBR on the ERK1/2 signaling pathway was evaluated using Western blotting. BBR decreased HUVEC proliferation in a dose-dependent manner and inhibited the expression of phospho-ERK1/2 in HUVECs. PD98059, a specific inhibitor of ERK1/2 signaling, attenuated the BBR-induced decrease in the proliferation of HUVECs. Phorbol 12-myristate 13-acetate, a natural activator of ERK1/2 signaling, did not alter BBR-induced proliferation. In conclusion, BBR inhibited endothelial cell proliferation by suppressing ERK1/2 signaling. These findings may provide a potential therapeutic strategy for suppressing tumor growth.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3