Efficient Isolation and Structure Analysis of (+)-Ranuncoside, a Unique Tricyclic Spiroacetal Glycoside, from Christmas Rose (Helleborus niger L.)

Author:

Cuny Eckehard1ORCID,Klingler Franz-Dietrich2

Affiliation:

1. Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Darmstadt Technical University, Darmstadt, Germany

2. Bio de tek GmbH, Griesheim, Germany

Abstract

The use of medicinal herbs as remedies reaches back to the Stone Age, and their importance as a source of drugs has continuously increased since then. Herbal ingredients can serve as active pharmaceuticals themselves or as lead substances for the development of synthetic pharmaceuticals with less toxicity, higher effectiveness or with new properties. To date, only 6% of the ∼600,000 plants on earth have been tested pharmacologically. Among these, the medicinal plant Helleborus niger L. (Christmas rose) is especially promising because its leaves contain ( + )-ranuncoside 1, characterized by a spiroacetal ring system, a motif which is responsible for the biological activity of a multitude of natural products. Structure-activity relationship studies of ( + )-ranuncoside 1 are lacking and no synthesis of 1 has been described yet. Therefore, we developed a protocol for the rapid and efficient isolation of 1 from the leaves of cultivated Christmas rose. Crystals of high purity were obtained that enabled us to study the stereochemistry of 1 by NMR spectroscopy in solution for the first time. The spiro configuration, the absolute stereochemistry, and the geometry of all three rings was then confirmed by x-ray structure analysis. Our data will enable future structure-activity relationship studies to assess the potential of 1 as a lead substance for the development of novel antibiotics and anticancer agents.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3