Ethanolic Extract of Rubus coreanus Fruits Inhibits Bone Marrow-Derived Osteoclast Differentiation and Lipopolysaccharide-Induced Bone Loss

Author:

Kim Tae-Ho1,Jeong Chae Gyeong2,Son Hyeong-U2,Huh Man-Il3,Kim Shin-Yoon4,Kim Hong Kyun3,Lee Sang-Han2

Affiliation:

1. Biomedical Research Institute, Kyungpook National University Hospital, Daegu, 41940, Republic of Korea

2. Department of Food Science & Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea

3. Department of Ophthalmology, Graduate School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea

4. Department of Orthopedic Surgery, Graduate School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea

Abstract

The inhibition of osteoclast differentiation/bone resorption is a well-known therapeutic strategy for controlling pathological and postmenopausal bone loss. Natural products that specifically inhibit osteoclastogenesis could therefore be developed as antiresorptive drugs for the treatment of metabolic bone disorders characterized by excessive osteoclastic bone resorption. We therefore examined the effects of Rubus coreanus extract (eeRc) on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced differentiation of bone marrow macrophages (BMMs) into osteoclasts and pit formation in vitro. Additionally, the in vivo effects of the eeRc were observed in mice with lipopolysaccharide (LPS)-induced bone erosion. In this study, we found that the ethanolic extract of Rubus coreanus fruits considerably suppressed the RANKL-induced differentiation of primary BMMs into osteoclasts and bone-resorbing activity of mature osteoclasts. Oral administration of eeRc attenuated LPS-induced bone loss in vivo, as demonstrated by the reversal of LPS-induced reduction in bone volume per tissue volume, bone mineral density, and trabecular number to some extent in eeRc-treated mice. In addition, eeRc slightly decreased the serum levels of C-terminal telopeptide fragments of type I collagen, the collagen-breakdown product generated by osteoclasts. Collectively, our results indicate that eeRc has the potential to inhibit bone loss by blocking osteoclast differentiation and could therefore be a promising natural product for the prevention and/or treatment of inflammatory bone loss.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3