Affiliation:
1. Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
2. Biomolecular Sciences Institute; Florida International University, Miami, FL 33199, USA
3. Laboratory of Cytoskeleton and Cell Cycle, Institute of Histology and Embryology, Faculty of Medicine, National University of Cuyo, 5500 Mendoza, Argentina
4. Fairchild Tropical Botanic Garden, 10901 Old Cutler Road, Coral Gables, FL 33156, USA
5. International Center of Tropical Botany, Florida International University, Miami, FL 33199, USA
Abstract
Dehydroleucodine, a sesquiterpene lactone, belongs to the terpenoid class of secondary metabolites. Dehydroleucodine and other Artemisia-derived phytochemicals evolved numerous biodefenses that were first co-opted for human pharmacological use by traditional cultures in the Middle East, Asia, Europe and the Americas. Later, these phytochemicals were modified through the use of medicinal chemical techniques to increase their potency. All sesquiterpene lactones contain an α-methylene-γ-lactone group, which confers thiol reactivity, which is responsible, in part, for their therapeutic effects. A wide range of therapeutic uses of sequiterpene lactones has been found, including anti-adipogenic, cytoprotective, anti-microbial, anti-viral, anti-fungal, anti-malarial and, anti-migraine effects. Dehydroleucodine significantly inhibits differentiation of murine preadipocytes and also significantly decreases the accumulation of lipid content by a dramatic down regulation of adipogenic-specific transcriptional factors PPARγ and C-EBPα. Dehydroleucodine also inhibits secretion of matrix metalloprotease-2 (MMP-2), which is a known protease involved in migration and invasion of B16 cells. In addition to these anti-adipogenic and anti-cancer effects, dehydroleucodine effectively neutralizes several bacterial species, including Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Helicobacter pylori, methicillin resistant Staphylococcus aueus (MRSA) and S. epidermis (MRSE). The compound also inhibits the growth and secretion of several toxins of Pseudomonas aeruginosa, possesses gastro-protective qualities and possesses anti-parasitic properties against Trypanosoma cruzi, responsible for Chagas disease. Other sesquiterpene lactones, such as parthenolide, costunolide, and helanin, also possess significant therapeutic utility.
Subject
Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine