Effects of Naringin on the Activity and mRNA Expression of CYP Isozymes in Rats

Author:

Cheng Keling1,Zeng Xuan1ORCID,Wu Hao1,Su Weiwei1,Fan Weiyang1,Bai Yang1,Yao Hongliang2,Li Peibo1

Affiliation:

1. Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China

2. Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Drug Synthesis and Evaluation Center, Guangdong Institute of Applied Biological Resources, Guangzhou, People’s Republic of China

Abstract

Naringin (NRG) is a common dietary flavonoid in citrus fruits and has been documented to possess multiple pharmacological activities, including anti-oxidant, anti-inflammatory, and neuroprotective effects. Naringin is frequently consumed in combination with common clinical drugs. To date, the effects of NRG on cytochrome P450 enzymes have not been fully investigated yet. In this study, the activities of hepatic CYP1A2, CYP2D2, CYP2C9, CYP2C19, and CYP2E1 in rats after the continuous oral administration of NRG (50 and 500 mg/kg) were evaluated using cocktail probe-drug method. The concentrations of 5 probe drugs (phenacetin, dextromethorphan, diclofenac sodium, omeprazole, and chlorzoxazone) in rat plasma were simultaneously determined with a validated HPLC-MS/MS (high performance liquid chromatography-tandem mass spectrometry) method and then used to calculate corresponding pharmacokinetic parameters. Compared with the control group, the AUC(0- t), AUC(0-∞), t 1/2, and C max of each probe drug in treatment groups showed no significant differences. Meanwhile, fluorescence quantitative polymerase chain reaction (FQ-PCR) analysis revealed that NRG did not significantly affect the mRNA expressions of genes CYP1a2, CYP2d2, CYP2c6, CYP2c11, and CYP2e1 in rat liver. Based on these results, it could be concluded that NRG showed no significant effects on the activities and mRNA expressions of tested CYP450 in rats.

Funder

National Natural Science Foundation of China

Applied Science and Technology R&D Special Fund Project of Guangdong Province

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3