Sargassumin C, a Novel Butenolide from Sargassum micracanthum

Author:

Kim Ji-Yul1ORCID,Oh Gun-Woo1,Lee Jeong Min1,Kim Hyun-Soo1,Ki Dae-Won2,Ko Seok-Chun1,Yim Mi-Jin1,Kim Kyung Woo1,Lee Dae-Sung1ORCID,Baek Kyunghwa1

Affiliation:

1. National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea

2. Division of Biotechnology and Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan-si, Republic of Korea

Abstract

Objective: In our ongoing effort to search for the novel secondary metabolites from the marine algae, chemical investigation of a methanolic extract of Sargassum micracanthum led to the isolation of a novel butenolide (1) and a known compound (2). Methods: The methanolic extract of S. micracanthum was partitioned and subjected to medium pressure column chromatography and preparative-HPLC to yield two compounds (1 and 2). Their structures were established based on comprehensive spectroscopic data (1D NMR, 2D NMR, and HRESIMS). These compounds (1 and 2) were evaluated for the production of the NO in lipopolysaccharide (LPS)-induced RAW264.7 cells and pro-inflammatory cytokines such as IL-6, IL-1 β, TNF- α, and IL-10. Results: A new compound (1) was determined to be a new butenolide derivative, and a known compound (2) were identified as 2-hydroxy-(5 E,9 E)-6,10,14-trimethylpentadeca-5,9-dien-12-one. Compounds 1 and 2 showed inhibitory activities in a dose-dependent manner on LPS-induced NO production in RAW264.7 cells and pro-inflammatory cytokines. Conclusion: A new butenolide, sargassumin C (1), and 2-hydroxy-(5 E,9 E)-6,10,14-trimethylpentadeca-5,9-dien-12-one (2) were isolated from the brown alga, S. micracanthum. Compound 2 was more effective than 1 on NO production and pro-inflammatory cytokines.

Funder

the National Marine Biodiversity Institute of Korea Research Program

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Marine natural products;Natural Product Reports;2024

2. Chemical constituents of the culture broth of Dentipellis fragilis and their anti-inflammatory activities;Phytochemistry;2023-10

3. Rubrolide analogues as urease inhibitors;Monatshefte für Chemie - Chemical Monthly;2023-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3