Pharmacophore-Based Virtual Screening of Potential SARS-CoV-2 Main Protease Inhibitors from Library of Natural Products

Author:

Wang Jing1,Jiang Yu1,Wu Yingnan1,Yu Hui2,Wang Zhanli23ORCID,Ma Yuheng1

Affiliation:

1. College of Pharmacy, Inner Mongolia Medical University, Hohhot, China

2. Inner Mongolia Key Laboratory of Disease-Related Biomarkers, Baotou Medical College, Baotou, China

3. Department of Clinical Laboratory, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China

Abstract

Background: The SARS-CoV-2 main protease (Mpro) is an attractive target for drug discovery. Methods: A pharmacophore model was built using the three-dimensional (3D) pharmacophore generation algorithm HypoGen in Discovery Studio 2019. The best pharmacophore model was selected for validation using a test set of 24 compounds and was used as a 3D query for further screening of an in-house database of natural compounds. Lipinski's rule of five was used to assess the drug-like properties of the hit compounds. The filtered compounds were then subjected to bioactivity evaluations. The active compounds were docked into the active site of the SARS-CoV-2 Mpro crystal structure (PDB ID: 7D1M). Results: A suitable 3D pharmacophore model, Hypo1, was found to be the best model, consisting of four features (one hydrophobic feature, one hydrogen bond donor, and two hydrogen bond acceptors). Pharmacophore-based virtual screening with Hypo1 as the query to search an in-house database of 34 439 natural compounds resulted in 1502 hits. Among these, 255 compounds satisfied Lipinski's rule of five. The highest ranking 10 compounds were selected for further experimental testing, and one hit (W-7) illustrated inhibitory activity against SARS-CoV-2 Mpro with an IC50 value of 75 μM. Docking studies revealed that this hit compound retained the necessary interactions within the active site of SARS-CoV-2 Mpro. Conclusion The identified lead natural compound could provide a scaffold for the further development of SARS-CoV-2 Mpro inhibitors.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3