A Simple Method for Isolation and Purification of DIBOA-Glc from Tripsacum dactyloides

Author:

Willett Cammy D.1,Lerch Robert N.12,Goyne Keith W.1,Leigh Nathan D.3,Lin Chung-Ho4,Roberts Craig A.5

Affiliation:

1. Department of Soil, Environmental and Atmospheric Sciences, University of Missouri, 302 ABNR Bldg., Columbia, MO 65211, USA

2. USDA-Agricultural Research Service, Cropping Systems and Water Quality Research Unit, 269 Ag. Eng. Bldg, Columbia, MO 65211, USA

3. Department of Chemistry, University of Missouri, 125 Chemistry Bldg, Columbia, MO 65211, USA

4. Department of Forestry, Center for Agroforestry, University of Missouri, 203 ABNR Bldg., Columbia, MO 65211, USA

5. Division of Plant Sciences, University of Missouri, 214D Waters Hall, Columbia, MO 65211, USA

Abstract

Naturally occurring benzoxazinones (Bx) are a highly reactive class of compounds that have received particular attention in the past several decades. Recently, we identified 2-β-D-glucopyranosyloxy-4-hydroxy-1,4-benzoxazin-3-one (DIBOA-Glc) as the compound present in the roots of Eastern gamagrass { Tripsacum dactyloides (L.)} responsible for atrazine degradation. However, characterization of the DIBOA-Glc/atrazine degradation reaction has been limited due to difficulties in attaining sufficient quantities of purified DIBOA-Glc. The objective of the study was to develop a simple purification and isolation method for obtaining bulk quantities of highly purified DIBOA-Glc. T. dactyloides roots were extracted with 90% aqueous methanol, and the crude extract was fractionated using an HPLC equipped with a C8 semi-prep column and fraction collector. UHPLC-DAD-MS/MS was used to confirm the identity of DIBOA-Glc in the fractions collected. Analysis by 13C and 1H NMR and DAD indicated that 542 mg of DIBOA-Glc with a purity of >99% was obtained. The reactivity of the DIBOA-Glc was confirmed in a 16 hour assay with atrazine, which resulted in 48.5% ± 1.2% (SD) atrazine degradation. The method described here offers several advantages over existing extraction and synthesis methods, which are more cumbersome, use hazardous chemicals, and yield only small quantities of purified compound. The newly developed method will facilitate future research characterizing the chemical behavior of DIBOA-Glc and determine its potential as an atrazine mitigation and remediation tool.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3