Anti-Melanogenic Effects of Hydroxyectoine via MITF Inhibition by JNK, p38, and AKT Pathways in B16F10 Melanoma Cells

Author:

Chung You C.1,Kim Min-Jin2,Kang Eun Y.3,Kim Yun B.3,Kim Bong S.4,Park Sung-Min3,Hyun Chang-Gu1

Affiliation:

1. Department of Chemistry and Cosmetics, Jeju National University, Korea

2. Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, Korea

3. NewMedion Co., Ltd., Jeju City, Jeju, Korea

4. Bio-Convergence Center, Jeju Technopark, Korea

Abstract

Melanin plays a role in determining human skin color of a person, and a large amount of melanin makes the skin color look darkened. The proper amount of melanin formation protects our skin from UV radiation, but excessive melanin production causes hyperpigmentation and leads to freckles, melasma, and lentigo. In this study, we investigated the inhibitory effect of hydroxyectoine on melanogenesis and its mechanism in B16F10 cells. Melanin content and cellular tyrosinase activity were determined. The expression of microphthalmia-associated transcription factor (MITF), and the activities of tyrosinase and other melanogenesis-related enzymes, such as tyrosinase-related protein 1 (TRP-1) and tyrosinase-related protein 2, were also examined. Hydroxyectoine treatment significantly inhibited melanin production and intracellular tyrosinase activity in a dose-dependent manner. Western blot analysis showed that hydroxyectoine also reduced the expressions of tyrosinase and TRP-1. In addition, hydroxyectoine significantly reduced the expression of MITF, a major regulator of melanin production, and inhibited the phosphorylation of p38, c-Jun N-terminal kinase, and activated the protein kinase B. The results demonstrated that hydroxyectoine inhibits the expression of MITF through the inhibition or activation of melanin-related signaling pathways and downregulates melanogenesis by inhibiting melanogenic enzyme expression and tyrosinase activity. Hydroxyectoine has potential value in functional cosmetics applications, such as whitening.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3