GC-MS-based Metabolomic Profiling of Thymoquinone in Streptozotocin-induced Diabetic Nephropathy in Rats

Author:

Raish Mohammad1,Ahmad Ajaz2,Jan Basit L.2,Alkharfy Khalid M.2,Mohsin Kazi1,Ahamad Syed Rizwan3,Ansari Mushtaq Ahmad4

Affiliation:

1. Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia

2. Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia

3. Research Centre, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia

4. Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia

Abstract

Diabetic nephropathy is a common complication of diabetes mellitus and one of the major etiologies of end-stage renal disease. Specific therapeutic interventions are necessary to treat such complications. The present study was designed to investigate the metabolomic changes induced by thymoquinone for the treatment of diabetic nephropathy, using a rodent model. Rats were divided into three different groups (n = 6 each): control, diabetic, and thymoquinone-treated diabetic groups. Metabolites in serum samples were analyzed via gas chromatography-mass spectrometry. Multiple changes were observed, including those related to the metabolism of amino acids and fatty acids. The correlation analysis suggested that treatment with thymoquinone led to the reversal of diabetic nephropathy that was associated with modulations in the metabolism and proteolysis of amino acids, fatty acids, glycerol phospholipids, and organic acids. In addition, we explored the mechanisms linking the metabolic profiling of diabetic nephropathy, with a particular emphasis on the potential roles of increased reactive oxygen species production and mitochondrial dysfunctions. Our findings demonstrated that metabolomic profiling provided significant insights into the basic mechanisms of diabetic nephropathy and the therapeutic effects of thymoquinone.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3