Cardioprotective Effects of Nano-Piperine Against Cypermethrin Toxicity Through Oxidative Stress, Histopathological and Immunohistochemical Studies in Male Wistar Rats

Author:

Hussain Sohail1ORCID,Ashafaq Mohammad1,Alshahrani Saeed1,Siddiqui Rahimullah1,Alam Mohammad Intakhab2,Mohammed Manal3,Almoshari Yosif2,Alqahtani Saad S45

Affiliation:

1. Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Kingdom of Saudi Arabia

2. Department of Pharmaceutics, College of Pharmacy, Jazan University, Kingdom of Saudi Arabia

3. Substance Abuse Research Center (SARC), College of Pharmacy, Jazan University, Kingdom of Saudi Arabia

4. Clinical Pharmacy Department, College of Pharmacy, Jazan University, Kingdom of Saudi Arabia

5. Pharmacy Practice Research Unit, College of Pharmacy, Jazan University, Kingdom of Saudi Arabia

Abstract

Background: Cypermethrin (Cyp) is a synthetic derivative of pyrethroids, implicated in various organ toxicity. This study investigated the potential cardio-protective activity of nano-piperine (NP) against Cyp toxicity in adult Wister male rats. Methods: All animals in groups II, III, IV, and V were subjected to Cyp (50 mg/kg) for 15 days. After 1 h of receiving the Cyp dose, 3 doses of NP (125, 250, and 500 µg/kg/day) were administered to groups III, IV, and V, respectively, for 10 days. In Group VI, a dose of 500 µg/kg NP alone was given orally daily for 10 days. Result: The toxic effects were evaluated by an increase in serum cardiac injury biomarkers (lactate dehydrogenase, cardiac troponin I, creatine kinase-myoglobin binding, tissue lipid peroxidation, a decrease in antioxidative activity, such as glutathione, superoxide dismutase [SOD] and catalase, and upregulation of interleukins [interleukin 1β, interleukin 6]). Immunohistochemistry studies of proteins (nuclear factor-κB [NF-kB], apoptotic protease activating factor-1 [Apaf-1], 4-hydroxynonenal [4-HNE] and Bax) showed enhanced expression, and histopathological examination revealed myolysis, loss of striation and hemorrhages indicating heart toxicity in the animals. Administration of NP significantly ameliorated all the changes caused by Cyp, such as a decrease in the levels of serum cardiac injury markers, an increase of antioxidative parameters, decrease in expression of inflammatory cytokines and NF-kB, Apaf-1, 4-HNE, and Bax, as shown by immunohistochemistry studies. Furthermore, all the histopathological changes were reduced to near the values of the control. Conclusion: Collectively our findings indicated that NP could be a potent nutraceutical exhibiting cardioprotective effects against Cyp-induced cardiotoxicity in rats.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3