Tetrastigma hemsleyanum Ethanolic Extract Inhibited the Growth of Nonsmall Cell Lung Cancer Cells by Suppressing Hypoxia-Inducible Factor-1α-Dependent Glycolysis and Angiogenesis

Author:

Wu Zhiqiang1,Xu Bin1,He Qin1,Hu Zhuyuan1,Yu Zhiyi1ORCID

Affiliation:

1. Department of Traditional Chinese Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China

Abstract

Background:The ethanolic extract of Tetrastigma hemsleyanum Diels et Gilg ( T hemsleyanum ethanolic extract [Te-EtOH]) showed positive effects against various tumors. However, there are few studies on the effects of Te-EtOH on nonsmall cell lung cancer (NSCLC). We attempted to examine the inhibiting effect of Te-EtOH on NSCLC cells and to elucidate the relevant mechanisms. Methods: A549 and H1299 cells were pretreated with Te-EtOH at different concentrations. Cell viability was analyzed by Cell Counting Kit-8, flow cytometry, and the 3-dimensional spheroid model; RNA-sequencing was also performed. Moreover, enzyme-linked immunosorbent assay and Western blot tests were performed to determine the metabolic capability, the expressions of energy metabolism-related proteins, and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/hypoxia-inducible factor-1α (HIF-1α) pathway. Additionally, under hypoxic conditions, the ability of Te-EtOH to inhibit HIF-1α expression and the metabolic capability of NSCLC cells was tested. Results: Te-EtOH considerably repressed cell viability in a dose-dependent manner. RNA-sequencing revealed that Te-EtOH's inhibition of NSCLC cells activity was related to metabolism. In addition, Te-EtOH significantly inhibited glycolysis, and adenosine triphosphate and lactate accumulation in NSCLC cells. Furthermore, we found that Te-EtOH could block PI3K/AKT/HIF-1α pathway activation. Moreover, Te-EtOH significantly inhibited hypoxia-induced expression of HIF-1α, vascular endothelial growth factor, and metabolic capability. Conclusions: Our results suggested that Te-EtOH inhibited the growth of NSCLC cells by suppressing HIF-1α-dependent glycolysis and angiogenesis.

Funder

The Major (Key) Science and Technology Research Project of Jinhua City

The Key project of research Fund for young of Jinhua Municipal Central Hospital

The key social development project of Jinhua Science and Technology program

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3