Affiliation:
1. School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
2. Department of Pharmacy, Wuhan No 1 Hospital, Wuhan 430022, China
Abstract
Objective: Shenling Baizhu San (SBS) was selected as the regimen for the treatment of COVID-19 in Guangdong Province. It is mainly used for the convalescent treatment of COVID-19 patients with deficiency of both lung and spleen. In this study, we aimed to explore the mechanism of SBS in the treatment of COVID-19 through network pharmacology combined with molecular docking. Methods: The targets of active components of SBS were collected through Traditional Chinese Medicine Systems Pharmacology (TCMSP) and ETCM databases. Using the Genecards, TTD, OMIM and other databases, the targets of COVID-19 were determined. The next step was to use a string database to build a protein–protein interactions (PPI) network between proteins, and use David database to perform gene ontology (GO) function enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on core targets. Then we used Cytoscape software to construct the active ingredients-core target-signaling pathway network, and finally the active ingredients of SBS were molecularly docked with the core targets to predict the mechanism of SBS in the treatment of COVID-19. Results: A total of 177 active compounds, 43 core targets and 58 signaling pathways were selected. Molecular docking results showed that the binding energies of the top six active components and the targets were all less than −5 kcal/MOL. Conclusion: The potential mechanism of action of SBS in the treatment of COVID-19 may be associated with the regulation of genes co-expressed with IL6, DPP4, PTGS2, PTGS1 and TNF.
Funder
Health Commission of Hubwi Province
Subject
Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献