Integrated Network Pharmacology, Molecular Docking, and Experimental Validation to Explore Potential Mechanisms of Sinomenine in the Treatment of Osteoarthritis

Author:

Wang Shaojun1ORCID,Lai Fanglin2,Xiang Ting1,Xu Yan3

Affiliation:

1. General Manager Office, Jiangxi Hanhe Biotechnology Co., Ltd, Nanchang, China

2. General Manager Office, Shaanxi Wisdom Health Management Service Co., Ltd, Xi’an, China

3. Laboratory of Traditional Chinese Medicine, Jiangxi Institute For Drug Control, Jiangxi Provincial Engineering Research Center for Drug and Medical Device Quality, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine, Nanchang, China

Abstract

Objective To systematically explore the targets and signaling pathways of sinomenine (SIN) in the treatment of osteoarthritis (OA) using integrated network pharmacology, molecular docking, and experimental validation. Methods The TCMSP, SwissADME, and Pharmmapper databases were used to predict SIN targets, while the databases of GeneCards, DisGeNET, OMIM, and DrugBank were selected to acquire OA targets. Subsequently, the intersection targets of SIN and OA disease were collected using the Veeny platform. Then, the protein-protein interaction (PPI) network map of “SIN-targets-OA” was established using String database and Cytoscape software. Additionally, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed through the Database for Annotation, Visualization and Integrated Discovery (DAVID). Additionally, the potential proteins of SIN against OA were validated via molecular docking technique. Finally, the experimental validation was performed in SW1353 cells induced by interleukin (IL)-1β. Results A total of 315 potential targets of SIN and 4300 OA-associated targets were collected from public databases, and 42 intersecting potential targets of SIN and OA disease acquired. Then, the PPI network diagram of “SIN-targets-OA” was acquired that comprised a total of 43 nodes and 82 edges. Moreover, 173 GO and 21 KEGG pathway entries were screened with a P-value <.05. Among them, peroxisome proliferator-activated receptor (PPAR) and IL-17 are the core signaling pathways. Molecular docking technique indicated strong binding energies of SIN with PPAR (−6.1 kcal/mol) and IL-17 (−6.3 kcal/mol). Lastly, SIN at the concentration of 50 μmol/L has a significant effect on IL-1β-induced SW1353 cells by the inhibition of PPAR-γ and IL-17A proteins without cytotoxicity. Conclusion This work revealed the underlying targets and signaling pathways of SIN against OA using integrated network pharmacology molecular docking, and experimental validation. These findings provide scientific evidence for the clinical application of SIN for OA treatment.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3