Toward the Discovery of SARS-CoV-2 Main Protease Inhibitors: Exploring Therapeutic Potentials of Evodiamine and Its Derivatives, Virtual Screening, Molecular Docking, and Molecular Dynamic Studies

Author:

Belal Amany1ORCID,Elsayed Amani2,Gharib Amal F.3,Ali Alqarni Maram Abdullah4,Soliman Aiten M.5,Mehany Ahmed B. M.6ORCID,Elanany Mohamed A.7

Affiliation:

1. Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia

2. Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia

3. Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia

4. Pharmacy Department, King Faisal Medical Complex, Taif, Saudi Arabia

5. Drug Radiation Research, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt

6. Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt

7. School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo, Cairo, Egypt

Abstract

Continuous scientific research is necessary to help in the discovery of new promising remedies for the treatment of COVID-19, caused by the SARS-CoV-2 virus. This current research was aimed at identifying potential novel inhibitors of the SARS-CoV-2 main protease, which represents one of the most important targets in the viral life cycle. Protein data bank file ID: 7JQ2 was used containing the co-crystallized inhibitor MPI5 with the Main protease. A virtual screening process for natural evodiamine compounds was performed through absorption, distribution, metabolism, elimination, and toxicity studies, and the promising hits were docked into the binding site of the enzyme. 13-(4-Chlorobenzoyl)-10-hydroxy-14-methyl-8,13,13 b,14-tetrahydroindolo[2′,3′:3,4]pyrido[2,1- b]-quinazolin-5(7 H)-one (29) interacted favorably with the enzyme; it showed high similarity to MPI5. Molecular dynamic simulations for 29 proved the stability of its binding to SARS-CoV-2 protease over 100 ns; subsequent MMGBSA analysis also supported this principle. Furthermore, 29 elucidated higher limiting action on enzymatic behavior throughout the whole process when compared to MPI5. This provides sufficient evidence for the potential of evodiamine compounds in modern antiviral research, especially compound 29, against the modern COVID-19 pandemic.

Funder

Taif University

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3