Phenolic Glycosides Citrulluside H and Citrulluside T Isolated From Young Watermelon (Citrullus lanatus) Fruit Have Beneficial Effects Against Cutibacterium acnes-Induced Skin Inflammation

Author:

Itoh Tomohiro1ORCID,Muramatsu Mai2,Miyazono Daiki1,Koketsu Mamoru3,Fujita Shingo4,Hashizume Toshiharu4

Affiliation:

1. Laboratory for Molecular Chemistry of Aquatic Materials, Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan

2. Department of Life Sciences and Chemistry, Faculty of Bioresources, Mie University, Tsu, Japan

3. Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan

4. Hagihara Farm Co., Ltd., Shiki-gun, Nara, Japan

Abstract

Acne vulgaris, typically caused by Cutibacterium acnes ( C. acnes) involves chronic inflammation of the sebaceous follicles and is the most common skin disease, afflicting 85% of adolescents. We previously isolated 2 novel phenolic glycosides, 2-caffeoyl-3-hydroxy-3-methylbutyric 4′-β-D-glucopyranosyloxy-3′-hydroxybenzyl ester (citrulluside H [CH]) and 2-caffeoyl-3-hydroxy-3-methylbutyric 4′-β-d-glucopyranosyloxybenzyl ester (citrulluside T [CT]), from young fruits of watermelon ( Citrullus lanatus). Both compounds suppressed UVB-induced photoaging in human fibroblasts by scavenging intracellular reactive oxygen species (ROS) and thus might be useful as natural skin care ingredients. In this study, we examined the inhibitory effects of these phenolic glycosides on C. acnes growth and C.acnes-induced inflammation. Neither phenolic glycoside inhibited the growth of C. acnes. However, they both significantly suppressed toll-like receptor (TLR) 1/2 or TLR2/6/nuclear factor κB (NF-κB) signaling in heat-killed C. acnes (hk- C. acnes) -stimulated RAW264.7 cells. Additionally, both phenolic glycosides decreased the expression of M1 macrophage biomarkers (cluster of differentiation [ CD] 80, CD86, and inducible NO synthase [ iNOS]), suggesting that they attenuate M1 macrophage activation. These results indicated that both CH and CT are potential therapeutic substances against C. acnes-induced skin inflammation.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3