Substituting Inosine for Guanosine in DNA: Structural and Dynamic Consequences

Author:

Ferris Zachary E.1,Li Qiushi1,Germann Markus W.12

Affiliation:

1. Department of Chemistry, Georgia State University, Atlanta, GA, USA

2. Department of Biology, Georgia State University, Atlanta, GA, USA

Abstract

Inosine differs from the guanosine nucleoside only by the absence of the N2 amino group. Both nucleosides also have similar electrostatic potentials. Therefore, substituting I for G has been used to probe various properties of nucleic acids and to facilitate the interpretation of binding studies. In particular, the absence of the amino group permits the assessment of its importance in the binding of ligands to the minor groove of duplex DNA. It has been known for some time that an I-C base pair is of lower stability than a regular G-C base pair, which needs to be considered when making DNA constructs containing inosine. However, it is generally assumed that both base pairs are structurally highly similar. To test this assumption in an identical sequence environment, we have determined the fine structure of two hairpin DNA substrates that differ only in the substitution of an I-C base pair for a G-C base pair. The structures have been solved using nuclear magnetic resonance (NMR) restraints in conjunction with Mardigras and molecular dynamics. The structural data are complemented with thermodynamic and dynamic data to get a comprehensive evaluation of the consequences of G-C vs I-C base pair substitutions. Our data show a strong similarity in the structures of the hairpins, but a significant difference in the melting temperatures, T m. This difference is also reflected in the drastically decreased base pair lifetime of 7.4 milliseconds compared to the G-C base pair lifetime of 155 milliseconds. The substitution of I-C for G-C is to probe for specific effect due to the amino group is satisfactory, as long as the lowered thermal stability and the drastically increased local dynamics are considered.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3