Anti-inflammatory Effect of (-)-Epigallocatechin-3-O-gallate on Human Umbilical Vein Endothelial Cells Grown on 316L Stainless Steel via STAT3/NF-κB Signaling

Author:

Xu Kun123,Liu Yi1,Wang Jinpeng4,Wang Yue1,Zhao Yuyi1,Zhao Jinbin1,Zhang Beilin5,Shao Guoxi6ORCID

Affiliation:

1. Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China

2. Jilin Engineering Research Center of Public Health Detection, Changchun, China

3. Beijing Key Laboratory of Environmental Toxicology, Beijing, China

4. Department of Cardiology, the Second Hospital of Jilin University, Changchun, China

5. Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China

6. Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China

Abstract

Stainless steel (316L SS) is commonly used to build coronary artery stents for the treatment of occluded arteries. However, tissues in contact with the stent may develop inflammation that can lead to restenosis. The natural substances derived from normal diet provide a pool of candidates that have potential to treat cardiovascular diseases. (-)-Epigallocatechin-3- O-gallate (EGCG), a polyphenolic flavonoid present in green tea, has antioxidant, antithrombogenic, and anti-inflammatory effects, and may reduce the risk of cardiovascular diseases. This study aimed to investigate whether EGCG has an anti-inflammatory effect on human umbilical vein endothelial cells (HUVECs) attached to the surface of 316L SS. We evaluated cell proliferation using the dimethyl thiazolyl tetrazolium bromide method in HUVECs after treatment with EGCG. Enzyme-linked immunosorbent assay (ELISA) assessed the level of inflammatory cytokines, including interleukin 6 (IL-6) and tumor necrosis factor (TNF) in HUVECs. We further investigated the regulatory mechanisms of the signal transducer and activator of transcription 3 (STAT3)/NF-κB signaling pathway in HUVECs by Western-blot analysis. We found that HUVECs cultured on 316L SS had increased cell proliferation and inflammation, and these can be inhibited by treatment with EGCG. EGCG reduced the secretion of IL-6 and TNF and decreased the expression of STAT3 and NF-κB in HUVECs cultured on 316L SS. Consequently, our study demonstrated that EGCG treatment ameliorates the proliferation of HUVEC when cultured with 316L SS, potentially by modulating the inflammation responses via the STAT3/NF-κB signaling pathways.

Funder

the Education Department of Jilin Province

Jilin Province Development and Reform Commission

National Natural Science Foundation of China

the Health and Family Planning Commission of Jilin Province

the Development of Science and Technology, Jilin Province

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3